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1. Introduction 

In general, a broad class of flow types, including river flows,

tsunami waves and dambreak flows, are defined as shallow

flows where the scale of the water depth is much less than the

characteristic length scales in the horizontal direction. In other

words, the shallow water depth prevents the development of

three-dimensional turbulent structures and confines the

secondary flows caused by the expansion of small eddies.

Therefore, the turbulent shallow flows may be studied quasi

two-dimensionally. By neglecting the development of

turbulence in the vertical direction, the Navier-Stokes

equations may be integrated and averaged in depth to reduce

the number of unknowns and to simplify the equations

considerably. 

Several methods have been developed for taking the

turbulence effects into consideration, ranging from simple

mixing length theory to Reynolds average Navier Stokes

(RANS) equations, large eddy simulations (LES) and direct

numerical simulations (DNS). The latter two models require

high computational effort and are not suitable for engineering

problems. The RANS approach, however, has been

extensively adopted for turbulence modeling. In the majority

of the RANS models, Reynolds stresses are calculated based

on the Boussinesq theory, which assumes a linear relationship

between the stresses and the gradients of the main flow

variables, [1].    

Kraichnan [2] and Batchelor [3] were amongst the early

researchers in the late 60’s who studied the two-dimensional

turbulent flows. Kraichnan studied the behavior of the energy

spectrum in the inertial subrange in quasi-steady forced 2D

turbulence, while Batchelor studied the energy spectrum in

homogeneous decaying 2D turbulence. The studies conducted

by Dracos et al. [4], Giger et al. [5], Chen and Jirka [6],

Thomas and Goldschmidt [7] and Lloyd et al. [8], indicated

that large horizontal quasi-2D coherent structures play an

important role in the development of shallow flow

characteristics. 

The homogeneous decaying turbulence produced by a grid in

shallow flows was investigated by Uijttewaal and Jirka, [9].

They explained the mode of energy transfer and the merging

of vortices. Several studies have been conducted by Uijttewaal

and Booij [10], Uijttewaal and Tukker [11] and Chu and

Babarutsi [12] concerning the shallowness and bed friction

effects in the development of 2D turbulent structures in free
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surface mixing layers. All of these numerical and experimental

studies have confirmed that large 2D turbulent structures are

equally important as slope and bed friction effects. The

stability of large turbulent structures depends mainly on a

balance between the horizontal shear stresses and the effects

caused by the bed friction and vertical stresses. Therefore, in

shallow flows, some of the characteristics are not two-

dimensional. 

Comparatively, amongst the studies that have been

conducted using the RANS models, insufficient attention has

been paid to the two-dimensional, depth-averaged shallow

water equations (2D-SWE), [13]. In these equations, the

turbulence effects and bed frictions may be included in the

source terms equally. The first zero-equation model that

explained the turbulence viscosity distribution was proposed

by Prandtl [1] and was called the Prandtl mixing length model.

The depth-averaged version of this model has been widely

used in the literature, [15]. Rastogi and Rodi [16] applied a

two-equation depth-averaged k-ε model for the turbulence

energy and the rate of energy dissipation. This model is the

most popular depth-averaged turbulence model for the shallow

water equations. However, the main drawback of the eddy

viscosity models may be attributed to the Boussinesq

assumption of isotropic eddy viscosity. This prerequisite has

been removed in the turbulence stress models. Cea et al. [17]

presented a depth-averaged algebraic stress model in which

the effect of the bed friction was included as well. Their model

offered reasonable stability in numerical experiments.

Applying the finite volume method (FVM), the integral

forms of the conservation laws are discretized over the

computational domain into small structured/unstructured cells.

Here, the main objective is to find the normal fluxes at the

faces of the cells, [18].  

An initial value problem for conservation laws, with the

initial data given by a piecewise constant function with a

single jump discontinuity, is called a Riemann problem.

Utilizing the weak solution theory of hyperbolic conservation

laws, exact Riemann solvers are able to trace the propagation

of discontinuities conveniently, including the shock waves in a

solution domain, [18,19]. However, the implementation of

these algorithms in the Godunov scheme is inefficient for non-

linear systems. On the other hand, approximate Riemann

solvers initiated, for example by Roe [20], Osher and Solomon

[21], Harten et al. [22] and Einfeldt [23], amongst the others,

offer more efficient results. Specifically, the flux difference

splitting algorithm of Roe has been widely applied and

recommended for the shallow water equations, [17,18,24].

The main consequence of the turbulence terms is the

diffusion of the velocity field, which is a physical phenomenon

that may erroneously be appraised when it is intensified by a

numerical diffusion. The unrealistic numerical diffusion is

inherent to the upwind schemes that are commonly used for

solving the hyperbolic equations. Therefore, the

implementation of high resolution schemes for the convective

fluxes to minimize the numerical diffusion has been highly

recommended, [13]. To achieve a high resolution in the

advanced FVM of the Godunov type and to eliminate false

oscillations or wiggles at the discontinuities, the flux or slope

limiters may be used for the data reconstruction at the face of

each cell. This method is called the total variation diminishing

(TVD) method, [19].  

Cea [25] applied a second order finite volume Roe-TVD

scheme to the shallow water equations with wet-dry fronts,

including the turbulence terms. In the present article, we apply

a similar model to simulate the oblique standing shock waves

produced by the incidence of a supercritical flow to a side-

baffle in an open channel. The multidimensional slope-limiters

of Yoon and Kang [26] are employed to achieve the second-

order spatial accuracy and to prevent spurious oscillations. For

the inspection of the turbulence effects, several depth-

averaged version of the RANS models, such as the two-

dimensional mixing length model, k-ε model and algebraic

stress model (ASM), are examined. The numerical results are

compared with the data obtained from a laboratory flume to

verify the accuracy of the computations.

2. Shallow water equations 

The two-dimensional, depth-averaged shallow water

equations may be obtained by integrating the 3D

Navier–Stokes equations over the flow depth with the

assumptions of incompressible fluid, a hydrostatic pressure

distribution, a nearly uniform velocity distribution in the

vertical direction and a small bottom slope. The conservative

form of the depth-averaged shallow water equations with

source terms may be written in vectorial form as:

(1)

in which

(2)

where W is the vector of the conserved variables, including

the water depth h and the unit discharges qx and qy . The

vectors Fx and Fy account for the convective fluxes in the x-
and y- directions, respectively, and g is the acceleration due to

gravity. The vector Gk is a source term composed of the bed

slope G1, bed friction G2, and turbulence terms G3: 

(3)

where Zb is the bed elevation, τb,x and τb,y are the bed shear

stresses due to friction in the x- and y- directions, ρ is the fluid

density, and are the depth-averaged horizontal Reynolds

stresses.

3. Numerical solution 

By time discretization of the system (1) and simplification,

the following equations are obtained with a second-order of
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accuracy in time, [25]:

(4)

where W
n

is the vector of conserved variables at time tn, and

∆t is the time step. For spatial discretization, an upwind model

may be implemented. The integration of system (1) over a cell

i with area Ai and implementation of the Gauss divergence

theorem lead to:

(5)

where Li is the boundary of the cell i, and =( x, y) is the

unit vector normal to the cell face, Fig. 1-a. The second term

on the left hand side of Eq. (5) may be written as:

(6)

where Ki is the number of faces at cell i (in a triangular 

cell, Ki=3), Lij is the length of the face between cells i and j
(cell face ij), φij is the numerical flux at the cell face ij, 
and nij=(nx,ny)ij is the normal vector at the cell face ij with a

length of Lij. In the upwind method, the numerical flux is

defined as:

(7)

The averaged values in the first order scheme of Roe at each

cell are defined as:

;                              ;
(8)

where Ux,i and Uy,i are the velocities of the flow in cell i in
the x- and y- directions, respectively, and hi is the water 

depth in cell i. To achieve a second order accuracy in the

method of Roe, the conserved variables at the triangular cell

faces are reconstructed using a spatial limiting technique [26],

Fig. 1-b:

(9)

in which WIj is the value of Wi at the boundary with cell j, r
is the distance vector between the cell area center i and the

middle of Lij , and d1i is the limited gradient of variables at cell

i, defined by:

(10)

where wa, wb  and wc are weighting factors, and dwa, dwb and

dwc  are unlimited gradients of the three surrounding cells a, b
and c. The unlimited gradient for cell i is computed using the

area-weighted average gradients at the three faces:

(11)

where Ai1a2 is the area of quadrilateral i1a2 (Fig. 1-a), and

d(W)m is the gradient of the variable W at the face m of cell i.
This gradient may be computed from the divergence theorem

and area-weighted average of two triangles around each face.

For example, for face 1 in Fig. 1-a, we have:

;                                     (12)

in which Γ is the integral path along the circumference of each

sub-triangle (e.g., 1a2). The weighting functions wa, wb  and

wc  are defined as:

(13)

where  ε is a small value (on the order of 10-4 and less), and

ga, gb and gc are the functions of the gradients of variables in

the cells surrounding cell i (i.e., cells a, b and c in Fig. 1-a)

defined by:

(14)
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(a)                                                                                                       (b)

Fig. 1. (a) A typical control volume cell. (b) Reconstruction of the conservative variables from the cell centers to the cell faces
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In Eqs. (14), ||dW||22 is the second norm of the unlimited

gradient of a specified variable. By definition, the norm L2 of

a vector is the sum of the squares of its elements. Using the

above equations, the limited gradient of a variable may be

determined, and the data may be reconstructed at the cell

boundaries. 

The slope and friction source terms, G1 and G2, in Eqs. (3)

may be defined as, [25]:

(15)

where S0x and S0y are the bed slopes in the x- and y- directions,

respectively, cf  is the bed coefficient of friction, and n is the

Manning roughness. During the numerical computations, G1 and

G2 are calculated based on the data obtained for the cell centers.

4. Depth-averaged Reynolds stress models for 2D free
surface flow

The Boussinesq assumption is the basis of all of the

turbulence eddy viscosity models. It relates the Reynolds

stresses to the mean velocity gradients via the eddy viscosity.

Using this assumption in the averaged Reynolds stress models,

the effects of the Reynolds stresses in the shallow flows (G3 in

Eq. (3)) may be written as:

(16)

where υt is the turbulence eddy viscosity. To discretize this

term, a semi-implicit method may be applied. When the

viscosity is large, it is required to discretize the diffusive term

implicitly. Davidson [27] divided this term in two parts:

(17)

where G3,^ is the orthogonal viscosity, and G3,|| is the non-

orthogonal viscosity. For the momentum component in the 

x-direction, the two components of viscosity may be calculated

from, [27]:

(18-a)

G3,||,x (18-b)

in which                         is the orthogonal diffusion, qx,i is the

unit discharge at a cell i in the x-direction, hij and υt,ij are the

averages of the depth and turbulent eddy viscosity in cells i
and j, Ux,B and Ux,V are velocities in the x-direction at points

B and V in Fig. 2, α~   ij=(α~   x,ij, α~   y,ij) is a unit vector perpendicular

to the line that connects the centers of the cells i and j, and d^,ij
is the projection of the distance between the two cell centers i
and j over a line perpendicular to the common face of the two

cells. All of the variables in Eqs. (18) are evaluated at time tn
except the unit discharge qx,i , which is calculated at tn+1.

Therefore, no additional system of equations must be solved to

increase the computational cost. The turbulence terms in the y-

direction may be calculated similarly. 

In the above equations, the eddy viscosity term may be

computed using any of the turbulence modeling theories that

will be introduced in the following sections.

4.1. The depth-averaged mixing length model  

In this model, the turbulence eddy viscosity is given by, [15]:

(19)

in which ls is the mixing length, Ux (Uy) is the flow velocity

in the x (y) direction, κ=.41 is the von Karman constant, dwall
is the distance of the cell center to the nearest wall, and uf is

the shear velocity that may be obtained from:

(20)

4.2. The depth-averaged k-ε model

In the depth-averaged model of k-ε, two transport equations

may be solved to calculate the turbulence eddy viscosity. One

of these equations computes the turbulence kinetic energy (k),

and the other determines the dissipation rate of turbulent

kinetic energy (ε). The k-ε system of equations in conservative

vectorial form may be written as, [17]:

(21)

where Φ is the vector of the turbulence conservative

variables, and FΦ,x and FΦ,y are the physical fluxes in the x-

and y-directions, defined as:

;                                ;                                  (22)

The source term elements, Hm(m=1,4) , are composed of the

turbulent diffusion (H1), the production due to the horizontal
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Fig. 2. Discretisation of the turbulent diffusion term
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velocity gradient (H2), the production due to bed friction (H3),

and the dissipation rate (H4). These terms are defined as:

; ;    

;          ;                ;     ;       ;           
(23)

Where Sij is the horizontal mean strain-rate tensor and is

calculated using the depth-averaged velocities. The

coefficients c1ε ,  c2ε,  σk, cµ and σε are constants of the model,

and their values for the standard k-ε are given as, [28]: 

c1ε =1.44  ;  c2ε=1.92  ;  σk=1.0  ;  cµ =0.09 ;  σε = 1.31   (24)

The k-ε system of partial differential equations in its

conservative form is of hyperbolic type with source terms. Both

of the eigenvalues of the Jacobian matrix of fluxes are equal,

which simplifies the numerical scheme. For the solution of this

system, the turbulent diffusion term (H1) may be split into two

parts: an orthogonal diffusion term (H1,^) and a non-orthogonal

diffusion term (H1,||). Based on Davidson’s proposal [27] for

preserving the stability of the method and maintaining positive

turbulence variables during the numerical computation, the

source term may be divided into a positive and a negative part.

After some algebraic manipulation we obtain:

(25)

where H n
p,i and H n

N,i are the positive and negative parts of the

source terms, respectively. The values of an
ij and an

i are

computed as:

(26)

Normally, the source terms H2 and H3 are always positive,

and the loss term H4 is negative. However, the diffusive source

term H1,|| may be either positive or negative. Therefore, it may

be added to the Hn
p or Hn

N terms. The negative and positive

source terms may be written as:

(27)

Where the jet of the flow impinges the sidewalls, the

turbulence kinetic energy given by the k-ε model is

overestimated. Therefore, a realizability constraint is required

to adjust the turbulence eddy viscosity, [29]:

(28)

4.3. The depth-averaged algebraic stress model (ASM) 

In this model, algebraic equations are used to obtain the

Reynolds stresses. Although the system of equations in the

ASM appears to be simpler than the RANS models, the

technique is less stable, specifically in 3D-modeling, because

of the highly nonlinear nature of the algebraic equations. The

stability of the model improves when explicit methods are

used instead of implicit techniques, [30]. 

In this procedure, only three components of the Reynolds

stresses ( ) appear in the depth-averaged shallow

water equations, [17]:

(29)

in which c2=0.6 and c11=1.8 are constant coefficients. The

matrix and vector elements, aij and bi, are defined as:

;                       ;                                     (30)

;                       ;                   

;                       ;                   

;        ;                            

where Puu,V, Pvv,V and Puv,V are the production terms caused

by the bed friction and are defined as:

;                         ;                                  (31)

The eddy viscosity assumption may be used to calculate the

kinetic turbulence energy to avoid too much dependence of

Reynolds stresses on each other and to increase the stability of

the method. Therefore, the following equation is implemented

in the turbulence production term in the k-ε model (H2 in Eq.

(23)):

(32)

Consequently, the system (29) may be solved explicitly,

improving the stability and convergence of the model.

5. Experimental model 

Some experiments were carried out in a flume of hydraulic

laboratory to examine the behavior of the oblique shock waves

downstream of a side-baffle. The flume had a length of L =8.0

m, a width of B =0.4 m and a wall height of H=0.5 m. The

longitudinal slope of the flume was S0x=0.00624, with a
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measured Manning roughness coefficient of n =0.0104. A thin

plate, as a side-baffle, was installed normal to the sidewall of

the flume, 3.0 m downstream from the beginning of the flume.

The plate width varied from 0.12 to 0.3 m in different

experiments. The constant flow discharge was Q=0.0372 m3/s.

The normal depth of flow was measured as 0.07 m without the

presence of the baffle. When the side-baffle was fixed, the

water rose at the upstream side, and a jet of flow was released

to the downstream canal from the partial opening. The

impingement of the jet flow to the side walls produced a series

of oblique shock waves, as shown in Fig. 3. Moreover, a

vortex was generated downstream, next to the baffle. The

depth of flow was measured by a depth gauge at distances of

0.04 m in the longitudinal and transversal directions. The

measurements were carried out at three longitudinal sections,

p1, p2 and p3, at 0.1, 0.2 and 0.3 m from the sidewall and at

eight transversal cross sections, as shown in Fig. 4. 

6. Application of the numerical model 

For the evaluation of the turbulence models, the supercritical

flow in a canal, having the same dimensions as the

experimental flume, with a side-baffle was simulated. The

length of the canal in the numerical model was 5 m, and the

solution domain was divided into 8305 unstructured triangular

cells. A constant discharge was introduced at the upstream

boundary. At the downstream end, the dependant variables (h,
qx and qy ) were interpolated from the solution domain, which

is reasonable due to the supercritical nature of the flow. The

solid boundaries were simulated using the characteristics

theory, [18].

Fig. 5 shows a three-dimensional view of the flow impinging

a baffle width of 0.12 m using the ASM. Obviously, the

numerical model was able to simulate the oblique waves

downstream of the baffle successfully. Fig. 6 plots the

numerical and experimental profiles of the flow depth in the

longitudinal section p1. The amplitude and phase of the

numerical shocks are in agreement with the experimental

measurements. In Fig. 7, for the sake of comparison, similar

profiles 1-m downstream of the baffle along p1, p2 and p3 are

plotted, on a larger scale, using different turbulence models

together with the case of the model without turbulence terms

(WT). It may be confirmed that the results of the different

models are close to each other. In other words, all of the

turbulence models, and even the WT case, are able to simulate

the shock behavior. However, there are some phase-lags that

may be distinguished at the latter shocks amongst the different

models. Apparently, the reduction of the flow velocity in the

downstream channel necessitates consideration of the

turbulence terms and their proper modeling. Based on these

profiles, the ASM offers the most favorable results. 

In Fig. 8, the contours of streamlines are plotted around a

baffle of 0.24 m in width for the three turbulence models and
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Fig. 4. The longitudinal and transversal cross sections
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Fig. 3. The experimental flume

Fig. 5. 3D view of flow using ASM
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for the case lacking turbulence terms. All of the models are

able to simulate a vortex adjacent to the baffle. However, the

shape and length of this vortex vary in different models. In

fact, the low velocity of flow at this region allows for the

turbulence terms to influence the flow pattern in different

models. Moreover, in the ASM and k-ε model, the generated

vortex is stronger, and the streamlines next to the baffle are

closer to each other, which is in agreement with our

experimental observations. A shaded plot of the flow depth is

shown in the background of this figure as well. The paths of

the oblique waves are coincident with the change of the

streamline directions. In Fig. 9, the distribution of the

turbulence kinetic energy (k) for the ASM and k-ε model are

shown in a shaded plot for a baffle width of 0.12 m. In both

models, the values of k at the upstream side of the baffle are

negligible, except in a thin margin close to the baffle due to the

variation in the direction of streamlines. At the downstream

canal, however, the turbulence kinetic energy is considerable,

such that the position of the oblique shocks may be identified

based on its variations. Based on the ASM results, the

maximum value of k appears at the lower side of the

impingement point of the first shock to the sidewall,

downstream of the baffle. The k-ε model, however, gives

larger values for k in a wider region at the same location. 

In Figs. 10a-h, cross sectional profiles of the flow depth at

various locations just before and after the baffle, obtained from

different models, are compared with the measured values. It

may be observed that the implementation of the turbulence

models has improved the results, and the ASM shows a better

performance than the other models, specifically at the standing

wave fronts.

A quantitative evaluation may be obtained by comparison of

the relative error norm E, defined as:

(33) 100×
−

=
∑

∑

mes

mesnum

h

hh
E    
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Fig. 7. Longitudinal profiles 1. m downstream from a 0.12 m 
baffle width
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where hnum is the numerical flow depth, and hmes is the

measured depth. The relative error norms for the three turbulence

models and the case of without turbulence terms (WT) are

plotted in Fig. 11 for the longitudinal profiles p1, p2 and p3 for

different baffle widths. It may be concluded that the

implementation of the turbulence terms reduces the error norms

in all of the longitudinal cross sections and improves the results.

However, in the ML model the turbulent length scale depends on

water depth. This assumption is not justified crossing the oblique

shock waves where a rapid variation of flow depth is observed.

Moreover, the Boussinesq assumption of isotropic eddy viscosity

is the main disadvantage of k-ε and ML models while in

algebraic stress model Reynolds stresses are anisotropic.

Consequently, the ASM presents the least error norms.

In Fig. 12, for a linear regression analysis, the computed

values of depths from the ASM are drawn versus the measured

depths along the p1 and p2 longitudinal directions. Then, a

straight line was fitted to each of the data sets. The equations

of the lines and R2 coefficients for a 0.12m width baffle are

shown in the graphs as well. Obviously, the numerical results

are close to the experimental measurements, and the slopes of

the lines approach unity. Similar graphs were plotted for other

turbulence models and baffle widths. It was observed that in

all of the longitudinal directions the implementation of

turbulence modeling improved the numerical model, and the

ASM offered the best results.
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Fig. 10. Comparison between experimental and numerical transversal depth profiles for a 0.12 m side-baffle width
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7. Assessment of the source term components 

In Eq. (3), the source terms consist of three components;

namely, the bed slope, bed friction and turbulence terms. To

investigate the importance of the different components of the

source terms, some numerical experiments were carried out. In

each of these experiments, only one component was excluded

from the source terms. Therefore, in run TC1, the bed slope term

was removed; in TC2, the bed friction term was removed; and

in TC3, the turbulence terms were removed. In Figs. 13 and 14,
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Fig. 11. Error norm E along different directions for different side-baffle widths
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the longitudinal profiles of the flow depths for each run along

the p1, p2 and p3 directions are plotted for baffle widths of

0.12 m and 0.3 m. The original profile, including all

components of the source terms, (ASM), and experimental

data, are also drawn in the same figures for the sake of

comparison. As expected, the best results are obtained when

all the components of the source terms are preserved. The

shock waves in TC1 are slightly amplified with a lagging

phase error and are attenuated in TC2 with a leading phase

error. However, the TC3 profile, in which the bed slope and

bed friction terms are retained, is close to the ASM profile

and the experimental data, indicating that at least in the range

of these experiments, neglecting the turbulence terms may be

tolerated. This conclusion may also be reached from Fig. 11,

in which the variation of the relative error norm was in a

small range for all of the baffle widths. Fortunately, ignoring

the turbulence terms simplifies the algorithm considerably.

This finding justifies a bulk of the previous research in which

the effect of the turbulence terms was completely neglected

in the open channel supercritical flow computations; see,

e.g., [31].

8. Conclusions

In this article, using the depth-averaged shallow water

equations, the effects of several turbulence models on the

performance of standing oblique shock waves were

investigated. The finite volume scheme of Roe-TVD with an

unstructured triangular mesh was applied. To avoid spurious

oscillations at the regions where the gradients of the variable

were considerable, advanced slope limiter functions were

implemented in the numerical algorithm. The effects of the

bed slope, bed friction and turbulences were considered in the

source terms. The bed slope and bed friction terms were

computed using the data at the center of each cell. Three

depth-averaged turbulence models consisting of the mixing

length (ML), k-ε and ASM were implemented. The standing

shock depths produced by the incidence of a supercritical flow

to a side-baffle were measured in a test flume. The comparison

of the experimental results and numerical predictions

confirmed the robustness of the numerical model. In particular,

the implementation of the turbulence models improved the

results at the shock positions. Moreover, all of the models were

able to simulate the vortex next to the baffle successfully.

However, the k-ε model and the ASM demonstrated a stronger

vortex pattern. Based on our overall findings, the ASM offered

superior results to the other models. The quantitative error

analysis confirmed this finding as well. Our numerical

experiments, however, revealed that amongst the source term

components, the negligence of the turbulence terms produced

the least relative depth error in comparison with the removal of

the bed slope or bed friction terms.
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